Chapter 8
JavaScript: Control

Statements, Part 2

Internet & World Wide Web
How to Program, 5/e

OBJECTIVES
In this chapter you'll:

m Learn the essentials of counter-controlled repetition

m Use the for and do...whi1e repetition statements to execute statements in a program
repeatedly.

m Perform multiple selection using the switch selection statement.
m Use the break and continue program-control statements

m Use the logical operators to make decisions.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Introduction

Essentials of Counter-Controlled Repetition
for Repetition Statement

Examples Using the for Statement

switch Multiple-Selection Statement
do...while Repetition Statement

break and continue Statements

Logical Operators

Web Resources

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

8.2 Essentials of Counter-Controlled
Repetition
» Counter-controlled repetition requires

= name of a control variable
= initial value of the control variable

= the increment (or decrement) by which the control
variable is modified each time through the loop
= the condition that tests for the final value of the

control variable to determine whether looping
should continue

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

8.2 Essentials of Counter-Controlled
Repetition (Cont.)

» The double-quote character delimits the
beginning and end of a string literal in
JavaScript

= it cannot be used in a string unless it is preceded
by a \ to create the escape sequence \”

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

8.2 Essentials of Counter-Controlled
Repetition (Cont.)

» HTMLS5 allows either single quotes (') or
double quotes (") to be placed around the
value specified for an attribute

» JavaScript allows single quotes to be placed in
a string literal

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <«!-- Fig. 8.1: WhileCounter.html -->

4 <!-- Counter-controlled repetition. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Counter-Controlled Repetition</title>

9 <script>

10

11 var counter = 1; // initialization

12

13 while (counter <= 7) // repetition condition
14 {

15 document.writeln("<p style = 'font-size: " +
16 counter + "ex'>HTML5 font size " + counter + "ex</p>");
17 ++counter; // increment

18 } //end while

19
20 </script>
21 </head><body></body>
22 </html>

Fig. 8.1 | Counter-controlled repetition. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

@ Counter-Controlled Repetit =

C © file:///C:/books/2011/IW3HTP5/examples/ch09/fig09_01/ 3¢ N\

HTMLS fea iz lex -

HTMLS5 font size 2ex

HTMLS font size 3ex

HTMLS font size 4ex

HTMLYS font size Sex

HTMLYS font size 6ex

HTMLYS font size 7ex

Fig. 8.1 | Counter-controlled repetition. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
\4

8.3 for Repetition Statement

» for statement

= Specifies each of the items needed for counter-controlled repetition with a control
variable

= Can use a block to put multiple statements into the body
» If the loop’s condition uses a < or > instead of a <= or >=, or
vice-versa, it can result in an off-by-one error

» for statement header contains three expressions
= [|nitialization
= Condition
= |ncrement Expression

» The increment expression in the for statement acts like a
stand-alone statement at the end of the body of the for
statement

» Place only expressions involving the control variable in the
initialization and increment sections of a for statement

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <«!-- Fig. 8.2: ForCounter.html -->

4 <!-- Counter-controlled repetition with the for statement. -->
5 <html>

6 <head>

7 <meta charset="utf-8">

8 <title>Counter-Controlled Repetition</title>

9 <script>

10

11 // Initialization, repetition condition and

12 // incrementing are all included in the for

13 // statement header.

14 for (var counter = 1; counter <= 7; ++counter)

15 document.writeln("<p style = 'font-size: " +

16 counter + "ex'>HTML5 font size " + counter + "ex</p>");
17

18 </script>

19 </head><body></body>
20 </html>

Fig. 8.2 | Counter-controlled repetition with the for statement.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

for Control Final value of control variable
keyword variable name for which the condition is true

for (var counter = 1: counter <= 7; ++counter)

—

Initial value of Loop-continuation Increment of
control variable condition control variable

Fig. 8.3 | for statement header components.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
\4

8.3 for Repetition Statement
(Cont.)

» The three expressions in the for statement
are optional

» The two semicolons in the for statement are
required
» The initialization, loop-continuation

condition and increment portions of a for
statement can contain arithmetic expressions

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

8.3 for Repetition Statement
(Cont.)

» The part of a script in which a variable name
can be used is known as the variable’s scope

» The “increment” of a for statement may be
negative, in which case it is called a
decrement and the loop actually counts
downward

» If the loop-continuation condition initially is
false, the body of the for statement is not
performed

= Execution proceeds with the statement following
the for statement

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
\4

Error-Prevention Tip 8.1

@ Although the value of the control variable can be
changed in the body of a for statement, avoid changing
it, because doing so can lead to subtle errors.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Establish
initial value of

/ control

var counter = 1 ‘

4

document.writeln(

true u —- -size: "
<p style='font-size: —»{ ++counter

counter <= 7

+ counter +

"ex'>HTMLS font size " + Increment
counter + "ex</p>"); the control
variable

Determine if 3 Body of loop

final value of (this may be many
coqtrt)CJlI) statements)
variable has

been reached

Fig. 8.4 | for repetition statement flowchart.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<P
8.4 Examples Using the for Statement

» Figure 8.5 uses the for statement to sum the
even integers from 2 to 100.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

ﬁ Common Programming Error 8.1

Not using the proper relational operator in the loop-
continuation condition of a loop that counts downward
(e.g.,using 1 <= 1l instead of 1 >= 11n aloop that counts
down to 1) is a logic error.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

OO~ WNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21

<IDOCTYPE html>

<!-- Fig. 8.5: Sum.html -->

<!-- Summation with the for repetition structure. -->
<html>
<head>
<meta charset = "utf-8">
<title>Sum the Even Integers from 2 to 100</title>
<script>

var sum = 0;

for (var number = 2; number <= 100; number += 2)
sum += number;

document.writeln("The sum of the even integers "

"from 2 to 100 1is " + sum);

+

</script>
</head><body></body>
</html>

Fig. 8.5 | Summation with the for repetition structure. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

@ Sum the Even Integers frorn =

C @ filey///C:/books/2011/IW3HTP5/examples/ch09/fig09_05/ 3¢ N\

The sum of the even integers from 2 to 100 is 2550

Fig. 8.5 | Summation with the for repetition structure. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Good Programming Practice 8.1

Although statements preceding a for statement and in
the body of a for statement can often be merged into the
for header, avoid doing so, because it makes the
program more difficult to read.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I <!DOCTYPE html>

2

3 <«!-- Fig. 8.6: Interest.html -->

4 <!-- Compound interest calculation with a for loop. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Calculating Compound Interest</title>

9 <style type = "text/css''>

10 table { width: 300px;

11 border-collapse: collapse;

12 background-color: Tlightblue; }

13 table, td, th { border: 1px solid black;

14 padding: 4px; }

15 th { text-align: left;

16 color: white;

17 background-color: darkblue; }

18 tr.oddrow { background-color: white; }

19 </style>
Fig. 8.6 | Compound interest calculation with a for loop. (Part | of
4.)

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

20 <script>

21
22 var amount; // current amount of money
23 var principal = 1000.00; // principal amount
24 var rate = 0.05; // interest rate
25
26 document.writeln("<table>"); // begin the table
27 document.writeln(
28 "<caption>Calculating Compound Interest</caption>");
29 document.writeln(
30 "<thead><tr><th>Year</th>"); // year column heading
31 document.writeln(
32 "<th>Amount on deposit</th>"); // amount column heading
33 document.writeln("</tr></thead><thody>");
34
Fig. 8.6 | Compound interest calculation with a for loop. (Part 2 of
4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

35 // output a table row for each year

36 for (var year = 1; year <= 10; ++year)

37 {

38 amount = principal * Math.pow(1.0 + rate, year);

39

40 if (year % 2 == 0)

41 document.writeln("<tr class="oddrow'><td>" + year +
42 "</td><td>" + amount.toFixed(2) + "</td></tr>");
43 else

44 document.writeIn("<tr><td>" + year +

45 "</td><td>" + amount.toFixed(2) + "</td></tr>");
46 } //end for

47

48 document.writeln("</tbody></table>");

49

50 </script>

51 </head><body></body>

52 </html>

Fig. 8.6 | Compound interest calculation with a for loop. (Part 3 of
4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

' @Calculating Compound | * !“

C Ofile///Cvz| @A B & N

(O Links > (] Other bookmarks Al Sync Error

Calculating Compound Interest

Amount on deposit
1050.00
1102.50
1157.63
121551
1276.28
1340.10
1407.10
1477 46
155133
1628.89

et
m
)

RY=T B - I I = O I S I B

—
(=]

Fig. 8.6 | Compound interest calculation with a for loop. (Part 4 of
4.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

8.4 Examples Using the for Statement
(cont.)

» JavaScript does not include an exponentiation
operator

= Math object’s pow method for this purpose.
Math.pow(x, y) calculates the value of x raised to
the yth power.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

8.5 switch Multiple-Selection
Statement

» switch multiple-selection statement
= Tests a variable or expression separately for each of the values it
may assume
= Different actions are taken for each value

» CSS property 11st-style-type
= Allows you to set the numbering system for a list
= Possible values include
- decimal (numbers—the default)
- Tower-roman (lowercase roman numerals)
- upper-roman (uppercase roman numerals)
- lower-alpha (lowercase letters)
- upper-alpha (uppercase letters)
- others

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

\4

8.5 switch Multiple-Selection
Statement (Cont.)

» switch statement
= Consists of a series of case labels and an optional default case
= When control reaches a switch statement

- The script evaluates the controlling expression in the parentheses
- Compares this value with the value in each of the case labels

- If the comparison evaluates to true, the statements after the case label
are executed in order until a break statement is reached

» The break statement is used as the last statement

in each case to exit the switch statement
immediately

» The default case allows you to specify a set of

statements to execute if no other case is satisfied
= Usually the last case in the switch statement

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
\4

8.5 switch Multiple-Selection

(A
\4

Statement (Cont.)

4
4

Each case can have multiple actions (statements)

Braces are not required around multiple actions in
a case of a switch

The break statement is not required for the last
case because program control automatically
continues with the next statement after the switch

Having several case labels listed together (e.qg.,
case 1: case 2: with no statements between the
cases) executes the same set of actions for each

case

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I <!'DOCTYPE html>

2

3 <«!-- Fig. 8.7: SwitchTest.html -->

4 <!-- Using the switch multiple-selection statement. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>Switching between HTML5 List Formats</title>

9 <script>

10

11 var choice; // user’s choice

12 var startTag; // starting list item tag

13 var endTag; // ending list item tag

14 var validInput = true; // true if input valid else false

15 var listType; // type of Tist as a string

16

17 choice = window.prompt("Select a Tist style:\n" +

18 "1l (numbered), 2 (lettered), 3 (roman numbered)", "1");

19
Fig. 8.7 | Using the switch multiple-selection statement. (Part | of
6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

20 switch (choice)

21 {

22 case "1":

23 startTag = "";

24 endTag = "";

25 1istType = "<hl>Numbered List</hl>";

26 break;

27 case ""2":

28 startTag = "<ol style = '"list-style-type: upper-alpha'>";

29 endTag = "";

30 1istType = "<hl>Lettered List</hl>";

31 break;

32 case "3":

33 startTag = "<ol style = 'list-style-type: upper-roman'>";

34 endTag = "";

35 1istType = "<hl>Roman Numbered List</hl>";

36 break;

37 default:

38 validInput = false;

39 break;

40 } //end switch

41
Fig. 8.7 | Using the switch multiple-selection statement. (Part 2 of
6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

42 if (validInput === true)

43 {

44 document.writeln(TistType + startTag);

45

46 for (var i = 1; 1 <= 3; ++1)

47 document.writeln("List item " + i + "</11>");
48

49 document.writeln(endTag);

50 } //end if

51 else

52 document.writeln("Invalid choice: " + choice);
53

54 </script>

55 </head><body></body>

56 </html>

Fig. 8.7 | Using the switch multiple-selection statement. (Part 3 of
6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Javascript X

Select a list style:
1 (numbered), 2 (lettered), 3 (roman numbered)

2

| ok]| cance |

() Switching between HTMLS

C @ file:///C:/books/2011/IW3HTP5/examples/ch09/fig09_07/ 55 N\

Lettered List

A Listitem 1
B. Listitem 2
C. Listitem 3

r

Fig. 8.7 | Using the switch multiple-selection statement. (Part 4 of
6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Javascript x

Select a list style:
1 (numbered), 2 (lettered), 3 (roman numbered)

1

() Switching between HTMLS

C @ file///C:/books/2011/IW3HTP5/examples/ch09/fig09_07/ 53 N\

-

Numbered List

1. Listitem 1
2. Listitem 2
3. Listitem 3)

Fig. 8.7 | Using the switch multiple-selection statement. (Part 5 of
6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Select a list style:
1 (numbered), 2 (lettered), 3 (roman numbered)

3

@ Switching between HTMLS

C O file:y///C:/books/2011/IW3HTP5/examples/ch09/fig09_07/ v | N\

-~

Roman Numbered List

m

I. Listitem 1
II. Listitem 2
1. List item 3

1

Fig. 8.7 | Using the switch multiple-selection statement. (Part 6 of
6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

@ tiue case a action(s) |—>{ break Ii

false

t -
0 e case baction(s) || break —

false

0 true case zaction(s) |— break —

false

| default action(s) ‘

-

-

Y
O

Fig. 8.8 | switch multiple-selection statement.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

8.6 do..wh1i1le Repetition <&

Statement

» do..while statement

= tests the loop-continuation condition after the loop
body executes

= The loop body always executes at least once

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

OO~ WNDE WN =—

10
11
12
13
14
15
16
17
18
19
20
21
22
23

<IDOCTYPE html>

<!l-- Fig. 8.9: DoWhileTest.htm]l -->

<!-- Using the do...while repetition statement. -->
<html>
<head>
<meta charset = "utf-8">
<title>Using the do...while Repetition Statement</title>
<script>

var counter = 1;

do {
document.writeln(“"<h" + counter + ">This is " +
"an h" + counter + " Tlevel head” + "</h" +
counter + ">");
++counter;
} while (counter <= 6);

</script>

</head><body></body>
</html>

Fig. 8.9 | Using the do...whi1e repetition statement. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

@ Using the do..while Repetit =

C @ file:///C:/books/2011/IW3HTP5/examples/ch09/fig09_09/ 15 N\

»

This is an h1 level head

This is an h2 level head

This is an h3 level head

This is an h4 level head

This is an h5 level head

This is an h6 level head

Fig. 8.9 | Using the do...while repetition statement. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

O

Y

| action(s) |

false

Fig. 8.10 | do...while repetition statement flowchart.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 8.2

Infinite loops are caused when the loop-continuation
condition never becomes false in awhile, for or
do...whi1e statement. To prevent this, make sure that
there’s not a semicolon immediately after the header of
awh1ile or for statement. In a counter-controlled loop,
make sure that the control variable i1s incremented (or
decremented) in the body of the loop. In a sentinel-
controlled loop, the sentinel value should eventually be
iput.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

8.7 break and continue
Statements

» break statement in awhile, for, do.while
or switch statement
= Causes immediate exit from the statement

= Execution continues with the next statement in
sequence

» break statement common uses
= Escape early from a loop
= Skip the remainder of a switch statement

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

\4

8.7 break and continue Statements
(Cont.)

» continue statement in awhile, for or

do..while

= skips the remaining statements in the body of the
statement and proceeds with the next iteration of
the loop

= In while and do..wh1ile statements, the loop-
continuation test evaluates immediately after the
continue statement executes

= In for statements, the increment expression
executes, then the loop-continuation test evaluates

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

OO~ WNDE WN =—

10
11
12
13
14
I5
16
17
18
19
20

<IDOCTYPE html>

<!-- Fig. 8.11: BreakTest.html -->

<!-- Using the break statement in a for statement. -->
<html>
<head>
<meta charset = "utf-8">
<title>
Using the break Statement in a for Statement
</title>
<script>

for (var count = 1; count <= 10; ++count)

{
if (count == 5)
break; // break Toop only if count ==
document.writeln(count + " ");
} //end for

Fig. 8.11 | Using the break statement in a for statement. (Part | of
2))

©1992-2012 by Pearson Education, Inc. All

Rights Reserved.

21 document.writeln(

22 "<p>Broke out of loop at count = " + count + "</p>");
23

24 </script>

25 </head><body></body>

26 </html>

' @ Using the break Statern = '“

C Ofile/ v | = & A

(1 Links * (ZJ Other bookmarks } Sync Error

1234

m.| »

Broke out of loop at count = 5

1

Fig. 8.11 | Using the break statement in a for statement. (Part 2 of
2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

I <!'DOCTYPE html>

2

3 <«!-- Fig. 8.12: ContinueTest.htm]l -->

4 <!-- Using the continue statement in a for statement. -->
5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>

9 Using the continue Statement in a for Statement
10 </title>

|

12 <script>

13

14 for (var count = 1; count <= 10; ++count)

15 {

16 if (count == 5)

17 continue; // skip remaining loop code only if count ==
18

19 document.writeln(count + " ");
20 } //end for
21

Fig. 8.12 | Using the continue statement in a for statement. (Part
| of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

22
23
24
25
26
27

document.writeln("<p>Used continue to skip printing 5</p>");
</script>

</head><body></body>
</html>

' @ Using the continue Stal = '“

“ C Ofiley,ve a = SEiq\

(1 Links > (7] Other bookmarks £} Sync Error

1234678910

4 fmtiig] » |

Used continue to skip printing 5

Fig. 8.12 | Using the continue statement in a for statement. (Part
2 0of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

8.8 Logical Operators

» Logical operators can be used to form complex
conditions by combining simple conditions

= && (logical AND)
= || (logical OR)
= | (logical NOT, also called logical negation)

» The && operator is used to ensure that two
conditions are both true before choosing a certain
path of execution

» JavaScript evaluates to false or true all
expressions that include relational operators,
equality operators and/or logical operators

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
\4

expression| expression2 expression| && expression2

false false false
false true false
true false false
true true true

Fig. 8.13 | Truth table for the && (logical AND) operator.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<

8.8 Logical Operators (Cont.)

» The | | (logical OR) operator is used to ensure
that either or both of two conditions are true
before choosing choose a certain path of
execution

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

\4

expression| expression2 expressionl || expression2

false false false
false true true
true false true
true true true

Fig. 8.14 | Truth table for the | | (logical OR) operator.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A

8.8 Logical Operators (Cont.)

» The && operator has a higher precedence
than the | | operator

» Both operators associate from left to right.
» An expression containing && or | | operators
is evaluated only until truth or falsity is

known
= This is called short-circuit evaluation

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

\4

(A

8.8 Logical Operators (Cont.)

» | (logical negation) operator

= reverses the meaning of a condition (i.e., a true
value becomes false, and a false value becomes
true)

= Has only a single condition as an operand (i.e., it
IS a unary operator)

= Placed before a condition to evaluate to true if
the original condition (without the logical
negation operator) is false

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

\4

expression lexpression

false true

true false

Fig. 8.15 | Truth table for
operator ! (logical negation).

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

(A
\4

8.9 Logical Operators (Cont.)

Most nonboolean values can be converted to a
boolean true or false value

Nonzero numeric values are considered to be true
The numeric value zero is considered to be false

Any string that contains characters is considered to
be true

The empty string is considered to be false

The value null and variables that have been
declared but not initialized are considered to be

false
All objects are considered to be true

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Operator Associativity Type

++ -- right to left unary
/% left to right multiplicative
+ - left to right additive

< <= > >= left to right relational

= = === == left to right equality

&& left to right logical AND
[left to right logical OR

?: right to left conditional

= 4= -= *= [= Y= right to left assighment

Fig. 8.16 | Precedence and associativity of the operators discussed
so far.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

